Скандий: факты и фактики

скандийЧем хорош скандий?

Сочетанием малого веса и высокой температурой плавления. Будучи 21-м элементом таблицы Менделеева, он располагается под алюминием в подгруппе 3Б, отличаясь от последнего втрое более высокой температурой плавления, а от соседнего титана — в полтора раза большей прочностью. Серебристый с желтым отливом скандий, заметно окисляющийся на воздухе лишь при нагреве выше 250оС, мог бы стать прекрасным конструкционным материалом, может быть, даже основой цивилизации. Однако не стал.

Чем плох скандий?

Тем, что он чрезвычайно рассеян. Скандия в земной коре 10-3—10-40%. Это не так уж мало, если сравнить с бла­городными платиной (10-7), золотом (10-8) и даже серебром (10-6). Хотя до соседей по таблице, например кальция или титана, ему очень далеко. Но вот по рассеянности скандий — рекордсмен: редко в каком минерале его содержание достигает 10 граммов на тонну. Поэтому добывать его не то чтобы сложно, но очень дорого. Цена на более-менее чистый скандий в разы превышает цену золота. Такой металл никак не может стать основой циви­лизации, хотя он и содержится в отвалах многих предприятий по производству металлов или фосфорных удобрений.

Какую роль сыграл скандий в утверждении Периодической системы?

Сформулировав свой закон, Д. И. Менделеев пред­сказал свойства элементов в незаполненных ячейках таблицы. Среди них был и элемент 21, названный им экабором. В 1879 году швед Ларс Нильсон обнаружил в минерале ауксените элемент, свойства которого оказались практически идентичны экабору. Этот элемент, названный скандием в честь родины Нильсона, стал вторым доказательством справедливости закона: первым был открытый в 1875 году экалюминий — галлий.

Зачем скандий металловедам?

Не будь он столь редким и дорогим, технологи могли бы найти ему много применений. Главное — аэрокосмическая промышленность. Так, добавка скандия в мельчайших количествах (доли весового процента) в сплавы алюминия и алюминия с магнием существенно, на десятки процентов, а порой и в разы увеличивает механические свойства: твердость, прочность, длительную прочность. Пластичность же при этом не уменьшается. Эффекты достигаются за счет того, что скандий, во-первых, сильно уменьшает размер зерен металла, а во-вторых, выделяется в виде упрочняющих частиц интерметаллида — скандида алюминия AlSc2. И заменить его нечем. Вот свежий опыт, поставленный немецкими учеными, которые делали тонкую алюминиевую пленку для последующей штамповки микроскопических деталей. Сплав с добавкой скандия удовлетворяет всем требованиям технологов, но уж очень хочется избавиться от этого дорогого элемента. Что если взять химический аналог — иттрий, стоящий в таблице сразу под скандием? Взяли и обнаружили, что структура пленок у обоих сплавов схожая, а прочность той, что с иттрием, даже выше. Но вот пластичность упала почти до нуля. Из такой пленки ничего не отштампуешь. Среди прочих достоинств алюминиевых сплавов со скандием — свариваемость и поглощение радиоволн; последнее нужно для облегчения маскировки боевых самолетов.

Легкие сплавы прежде всего нужны авиации и космонавтике. Если не думать о цене, для столь важного дела следует применять самый лучший материал. (Вспомним слова, приписываемые конструктору МИГов А. И. Микояну: «Если надо, мои самолеты будут заправляться армянским коньяком».) Так и делали в СССР, где была поставлена задача — получить десять тонн скандия в год (больше, чем все остальные страны, вместе взятые) и пре­вратить его в тысячу тонн высокопрочного алюминиевого сплава. Из такого сплава, в частности, были сделаны элементы обшивки космического челнока «Буран».

Если же думать о цене, то возникает вопрос: а окупаются ли затраты? Пусть самолет будет тяжелее, но дешевле, ведь по со­стоянию на 2011 год, согласно данным из доклада Геологической службы США «Mineral Commodity Summaries 2012» килограмм алюминий-скандиевого сплава стоил 220 долларов (годом ранее — 74 доллара). А килограмм чистого алюминия шел на бирже по два доллара. Видимо, соображения экономии и привели после пере­стройки к значительному падению спроса на скандий и сокраще­нию его производства. Так, по данным того же доклада, в главной авиастроительной стране мира, США, скандий не добывают аж с 1990 года, а пользуются поставками из КНР, России и Украины. При этом основное использование алюминиевых сплавов со скандием сегодня — изготовление профессиональных бейсбольных бит, а также рам очень дорогих гоночных велосипедов.

Впрочем, будущее этого металла авторы доклада все же связы­вают с авиацией и космосом. Может быть, имеется в виду второе рождение известных легких сплавов, а может быть, и уникальный новый материал — бериллид скандия ScBe16. Это легчайший из возможных (удельный молекулярный вес в расчете на один атом оказывается чуть больше 11, то есть меньше, чем у углерода) металлический конструкционный материал, способный выдер­живать нагрев на воздухе до 1600оС. Энтузиасты заявляют, что, будь в нашем распоряжении много скандия и бериллия, именно из их интерметаллида делали бы космические корабли, двигате­ли, турбины электростанций и много чего еще. Увы, при этом они упускают из виду, что интерметаллиды — вещества хотя и проч­ные, но, как правило, хрупкие, и ни один конструктор по доброй воле такой материал в ответственную конструкцию не поставит. Конечно, можно различными ухищрениями поднять пластичность материала, но, если это требуется делать в огромном интервале температур, от комнатной до белого каления, задача становится практически неразрешимой. А традиционным легким сплавам в самолетах на пятки наступают углепластики — материалы легчай­шие и прочнейшие. Поэтому авиационно-космическое будущее сплавам со скандием отнюдь не гарантировано.

Как скандий связан со светом?

Скандий присутствует в галогеновых лампах. Именно он обеспечивает им спектр излучения, сходный с солнечным. Считается, что светодиоды сегодня вы­тесняют такие лампы с рынка. А вот в лазерах скандий прочно занял свое место: его добавляют в состав иттрий-галиевых гранатов — основы современных твердотельных лазеров. В частности, на иттрий-скандий-галлиевом гранате созданы ме­дицинские лазеры. Например, ими пытаются лечить кариес и омолаживать кожу лица. Первое направление раз за разом дока­зывает свою бесперспективность: стальной бур в сравнительных испытаниях всегда лучше вычищает больной зуб от пораженного материала, соответственно и прочность крепления пломбы при этом оказывается вышe. И стерилизовать зубы полностью не удается, хотя, если промыть каналы корня зуба гипохлоритом натрия NaOCl и осветить лазером мощностью в 1 Вт, вредных грибков Candida albicans в них оказывается существенно меньше, чем при других видах де­зинфекции. Что же касается омоложения, ради которого «испаряют» лазером верхний слой кожи лица, то у гранатового лазера со скандием есть сильный конкурент — лазер на углекислом газе. Разница в том, что импульсный гранатовый лазер гораздо меньше нагревает кожу, нежели газовый. Казалось бы, это должно дать ему преимущество. Однако многократные сравнения разных лазеров этого не подтверждают. Вот описание одного из опытов. У 28 пациенток лица разделили на четыре участ­ка, и каждый из них обрабатывали случайно выбранным лазером. Последующий анализ не показал статистически значимого раз­личия ни в качестве омоложения, ни в самочувствии пациенток. Стало быть, использование разных лазеров объясняется маркетинговыми причинами, а не медицинскими показаниями, делают вывод авторы работы.

Зачем нужен радиоактивный скандий и как его делают?

Са­мым интересным радиоактивным изотопом оказался скандий-44 с периодом полураспада 3,97 часа, излучающий позитроны. Ге­нератором этого скандия служит радиоактивный изотоп титан-44, с периодом полураспада 60 лет. Из такого генератора ежедневно извлекают порцию скандия для исследований. А служит он для позитронно-эмиссионной томографии. Благодаря относительно большому времени жизни скандия-44, а также тому, что после из­лучения позитрона остается безвредный кальций-44, созданные на его основе препараты позволяют следить за длительными перемещениями лекарственных и других веществ в организме.

Какие новые приложения могут появиться у скандия?

Очевид­но, что обеспечить потребление столь дорогого вещества может только его выдающееся свойство. Не исключено, что в ближайшее время он поможет накапливать водород для устройств водо­родной энергетики, причем вес водорода превысит критическое значение в 5%. Материалы, содержащие скандий, демонстрируют очень хорошие результаты. Так, порошок из частиц Mg65Sc35 сумел накопить до 6,4% водорода, причем спустя 50 циклов зарядка- разрядка способность к накоплению упала не столь уж сильно — до 4,3%. Добавка скандия существенно ускорила скорость пере­мещения водорода, снизив активационную энергию этого процес­са в два раза. Расчет поведения кластеров Si@Al12 со скандиевым покрытием показал, что они, во-первых, не будут слипаться, а во- вторых, смогут накопить более 6% водорода. Аналогич­ный расчет для наночешуек графена, декорированных по торцу скандием, предсказывает накопление уже 9% водорода, причем с удивительно низким значением энергии связи. Для графена с кальцием те же исследователи получили емкость лишь в 5%. Видимо, теперь дело за экспериментальной проверкой. А вот пористые полимеры, даже со скандием, на рекорд не пошли — они вбирают в себя не более 3 вес. % водорода.

Чем скандий похож на красную ртуть?

Три вещества: скан­дий, красная ртуть и изотопно-чистый осмий-187 прославились в конце перестройки тем, что все мало-мальски связанные с металлургией люди разыскивали их в надежде мгновенно раз­богатеть. Соблазн был очень велик, ведь граммы этих металлов оценивались в сотни долларов. Ажиотаж подогревался тем об­стоятельством, что в советскую эпоху было принято заказывать некоторые элементы в избыточном количестве, например, чтобы выбрать в конце года выделенные на финансирование института фонды. В результате у многих в запасниках скопились всевоз­можные редкие и дорогие вещества — рений, индий, лантан, ниобий, гафний, тот же скандий. Через некоторое время запасы списывали, металл же оставался в столе на всякий случай для будущих исследований. С развитием товарно-денежных отно­шений появилась возможность обратить эти запасы в наличные. Многие ли сумели этой возможностью воспользоваться — не­известно, но сплетни о том, что есть спрос на дорогие металлы, распространились со скоростью степного пожара. Если красная ртуть — вещество скорее вымышленное, а осмий-187 — чрез­вычайно специальное, то скандий — пусть редкий, но всем по­нятный легирующий элемент специальных сплавов.

Об операции «скандий—красная ртуть—осмий-187» есть не­сколько мнений. По одной, самой безобидной, западные партнеры таким образом искали поставщиков ценного сырья из-за желез­ного занавеса. По другой — ее организовали спецслужбы для выявления каналов контрабанды и утечки гостайны. Конспирологи утверждают: таким способом по фиктивным контрактам в СССР были завезены деньги для оплаты подрывных действий — фик­тивно вывозить металл, два килограмма которого тянут на пол­миллиона долларов, легче, чем вагоны с алюминием. Впрочем, это могло быть банальным разворовыванием советских запасов, например, в результате перепродажи металла по заниженной цене. Стоил же скандий и тогда, и сейчас очень дорого, в чем можно убедиться, пролистав упомянутый американский отчет: один грамм скандия, например, в форме дендритов (их получают, осаждая чистый металл из пара) стоил в 2011 году 199 долларов (примерно в четыре раза дороже золота), а в 2007-м — 208 дол­ларов. Это не сильно отличается от 191 доллара — стоимости грамма тех же дендритов чистотой 99,99% в 1994 году.

Во всей этой истории совершенно непонятно, кому нужен скан­дий, если производство материалов на его основе невелико и все поставщики столь хорошо известны, что обращаться к черному рынку не имеет смысла. Есть мнение, что вся процедура связа­на с обманом банкиров. Дорогой металл — отличное средство залога, если же он тебе достался дешево, а то и бесплатно, то можно с легким сердцем взять под него кредит, переложив на банкиров головную боль, связанную с последующей продажей дорогого, но мало кому нужного вещества. Не исключено, что советский скандий до сих пор обращается в этой далекой от материаловедения сфере.

А. Мотыляев

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>